Protein Clustering on a Grassmann Manifold
نویسندگان
چکیده
We propose a new method for clustering 3D protein structures. In our method, the 3D structure of a protein is represented by a linear subspace, which is generated using PCA from the set of synthesized multi-view images of the protein. The similarity of two protein structures is then defined by the canonical angles between the corresponding subspaces. The merit of this approach is that we can avoid the difficulties of protein structure alignments because this similarity measure does not rely on the precise alignment and geometry of each alpha carbon atom. In this approach, we tackle the protein structure clustering problem by considering the set of subspaces corresponding to the various proteins. The clustering of subspaces with the same dimension is equivalent to the clustering of a corresponding set of points on a Grassmann manifold. Therefore, we call our approach the Grassmannian Protein Clustering Method (GPCM). We evaluate the effectiveness of our method through experiments on the clustering of randomly selected proteins from the Protein Data Bank into four classes: alpha, beta, alpha/beta, alpha+beta (with multi-domain protein). The results show that GPCM outperforms the k-means clustering with Gauss Integrals Tuned, which is a state-ofthe-art descriptor of protein structure.
منابع مشابه
Locality Preserving Projections for Grassmann manifold
Learning on Grassmann manifold has become popular in many computer vision tasks, with the strong capability to extract discriminative information for imagesets and videos. However, such learning algorithms particularly on high-dimensional Grassmann manifold always involve with significantly high computational cost, which seriously limits the applicability of learning on Grassmann manifold in mo...
متن کاملLow Rank Representation on Grassmann Manifolds: An Extrinsic Perspective
Many computer vision algorithms employ subspace models to represent data. The Low-rank representation (LRR) has been successfully applied in subspace clustering for which data are clustered according to their subspace structures. The possibility of extending LRR on Grassmann manifold is explored in this paper. Rather than directly embedding Grassmann manifold into a symmetric matrix space, an e...
متن کاملSingle Image Super Resolution via Manifold Approximation
Image super-resolution remains an important research topic to overcome the limitations of physical acquisition systems, and to support the development of high resolution displays. Previous example-based super-resolution approaches mainly focus on analyzing the co-occurrence properties of lowresolution and high-resolution patches. Recently, we proposed a novel single image super-resolution appro...
متن کاملKernelized Low Rank Representation on Grassmann Manifolds
Low rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. One of its successful applications is subspace clustering which means data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is n...
متن کاملLow Rank Representation on Grassmann Manifolds
Low-rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. One of its successful applications is subspace clustering which means data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012